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ABSTRACT
All ecological measurements are subject to error; the effects of missed detection (false negatives) are well known, but 
the effects of mistaken detection (false positives) are less understood. Long-term capture–recapture datasets provide 
valuable ecological insights and baselines for conservation and management, but where such studies rely on nonin-
vasive re-encounters, such as field-readable color bands, there is the potential to accumulate detection errors as the 
length of the study and number of tags deployed increases. We investigated the prevalence and effects of misreads in 
a 10-yr dataset of Red Knots (Calidris canutus rufa) marked with field-readable leg flags in Delaware, USA. We quantified 
the effects of misreads on survival estimation via a simulation study and evaluated whether removal of individuals only 
reported once in a year (potential misreads) influenced survival estimation from both simulated datasets and our case 
study data. We found overall apparent error rates of 0.31% (minimum) to 6.6% (maximum). Observer-specific error rates 
and the variation among observers both decreased with the number of flags an observer recorded. Our simulation study 
showed that misreads lead to spurious negative trends in survival over time, particularly for long-term studies. Removing 
all records in which a flag was only recorded once in a sampling occasion reduced bias and eliminated spurious nega-
tive trends in survival but also reduced precision in survival estimates. Without data filtering, we found a slight decrease 
in Red Knot annual survival probability from 2008 to 2018 (β  =  −0.043  ±  0.03), but removing all single-observation 
records resulted in no apparent trend (β = −0.0074 ± 0.02). Spurious trends in demographic rates could influence infer-
ence about population trajectories and resultant conservation decision-making. Data filtering could eliminate errors, but 
researchers should carefully consider the tradeoff between precision obtained by larger sample sizes and potential bias 
due to misreads in their data.

Keywords: capture–recapture, citizen science, error rate, false positives, individual misidentification, mark–resight

Efectos de la identificación errónea de individuos sobre las estimaciones de supervivencia en estudios de 
largo plazo de marca y re-avistamiento

RESUMEN
Todas las mediciones ecológicas están sujetas a error; los efectos de la falta de detección (falso negativo) son bien 
conocidos, pero los efectos de la detección incorrecta (falso positivo) son menos entendidos. Las bases de datos de largo 
plazo de captura-recaptura brindan información ecológica valiosa y líneas de base para conservación y manejo, pero 
en los casos en que estos estudios se sustentan en reencuentros no invasivos, como anillos de color legibles a campo, 
existe el potencial de acumular errores de detección a medida que aumenta la duración del estudio y el número de 
marcas colocadas. Investigamos la frecuencia y los efectos de las malinterpretaciones en una base de datos de 10 años 
de Calidris canutus rufa marcados en las patas con anillos legibles a campo en Delaware, USA. Cuantificamos los efectos 
de las malinterpretaciones en las estimaciones de supervivencia a través de un estudio de simulación y evaluamos 
si la remoción de individuos solo reportados una vez en el año (malinterpretaciones potenciales) influenciaron la 
estimación de supervivencia considerando tanto las bases de datos simuladas como los datos de nuestro caso de 
estudio. Encontramos tasas globales de error aparente de 0.31% (mínimo) hasta 6.6% (máximo). Las tasas de error 
específico observadas y la variación entre observadores ambas disminuyeron con el número de anillos registrados 
por un mismo observador. Nuestro estudio de simulación mostró que las malinterpretaciones llevaron a tendencias 
negativas espurias en la supervivencia a lo largo del tiempo, particularmente para estudios de largo plazo. La remoción 
de todos los registros en los cuales un anillo fue registrado solo una vez en una ocasión de muestreo redujo el sesgo 
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y eliminó las tendencias negativas espurias en la supervivencia, pero también redujo la precisión en las estimaciones 
de supervivencia. Sin el filtrado de los datos, encontramos una leve disminución en la probabilidad de supervivencia 
anual de C. c. rufa de 2008 a 2018 (β = –0.043 ± 0.03), pero la remoción de todos los registros de observaciones únicas 
aparentemente no generó ninguna tendencia (β = –0.0074 ± 0.02). Las tendencias espurias en las tasas demográficas 
podrían influenciar las inferencias sobre las trayectorias poblacionales y las decisiones de conservación resultantes. El 
filtrado de los datos podría eliminar los errores, pero los investigadores deben considerar con cuidado el balance entre 
la precisión obtenida con tamaños de muestreo más grandes y el sesgo potencial debido a las malinterpretaciones en 
sus datos.

Palabras clave: captura–recaptura, ciencia ciudadana, falso positivos, malinterpretación individual, marca y 
re-avistamiento, tasa de error

INTRODUCTION

Observation error is a well-studied problem in ecology. 
While the effect of missed detections (false negatives) is 
largely understood, the effects of incorrect detections (false 
positives) are more complex. False positives can occur in 
different ways depending on the data type and sampling 
methods, for example via species misidentification in oc-
cupancy surveys (Miller et al. 2011, Yu et al. 2014) or via 
genotyping error in noninvasive genetic sampling (Wright 
et  al. 2009, Yoshizaki et  al. 2009). The resulting effects 
on estimation vary among different types of errors. This 
issue is central to capture–recapture analyses, which rely 
on a core assumption that individuals are correctly iden-
tified when encountered and that there are no false posi-
tive detections (Lebreton et al. 1992, Williams et al. 2002). 
Many types of individual marks can be “encountered” 
without physical recapture, facilitating data collection on 
large spatial and temporal scales, including both artificial 
marks (e.g., dye marks, color bands, leg flags, patagial or 
ear tags; Silvy et al. 2012) and natural marks (e.g., skin or 
pelage patterns, permanent scars [Beck et al. 2004], or gen-
etic markers [Yoshizaki 2011]). However, with noninvasive 
encounters, also termed mark–resight studies, the risk of 
misidentifying individuals is greater than with physical re-
captures because there is limited opportunity to confirm 
individual ID upon encounter.

Long-term datasets are valuable to ecology and con-
servation biology, and often rely on a large number of ob-
servers with varying experience and who spend varying 
lengths of time with the project (Bildstein 1998, Newman 
et al. 2003, Cohn 2008, Magurran et al. 2010, Conrad and 
Hilchey 2011, Tulloch et al. 2013). Both observer training 
and data quality control protocols are necessary to ensure 
accurate data collection. In some cases it may be relatively 
straightforward to remove impossible observations from 
the dataset before analysis; however, as both the study 
scale (spatial or temporal) and the number of deployed 
tags available for observation increases, initial filtering of 
the data becomes more difficult. Additionally, even if error 
rate is low and constant over time, the absolute number of 
errors may accumulate as the length of the study increases. 
These concerns apply particularly to data collected via 

citizen science, volunteer-based surveys, or by seasonal in-
terns and field technicians, but even skilled professionals 
can make errors. Regardless of data collection protocol, as 
the number of observers and length of study increases, the 
potential for errors to appear in the dataset also increases. 
Determining the observer-specific attributes that are asso-
ciated with misreads can inform training protocols and aid 
in vetting data collected by observers with varying experi-
ence or training.

The potential for misidentifications to occur in mark–
resight studies is understood by field researchers, and 
many marking protocols are designed to reduce the prob-
ability of misidentifications, such as excluding easily con-
fused letters from alphanumeric codes (Clark et al. 2005) 
or avoiding deployment of similar codes on individuals 
with nearby territories or home ranges. Several researchers 
have also estimated error rates for reading color band com-
binations and alphanumeric codes using both experimental 
methods and double-marking studies (Weiss et  al. 1991, 
Burton 2000, Milligan et al. 2003, Lavers and Jones 2008, 
Mitchell and Trinder 2008, Roche et al. 2014), resulting in 
estimated error rates from 1% to 16%. These errors could 
bias demographic estimates if not accounted for during ei-
ther data processing or analysis (Schwarz and Stobo 1999, 
Bearhop et al. 2003, Morrison et al. 2011).

Some modeling approaches have been developed to 
explicitly account for individual misidentification during 
estimation, but most of these models were developed spe-
cifically for data collected via noninvasive genetic sam-
pling or photographs (Link et  al. 2010, Morrison et  al. 
2011, Yoshizaki et  al. 2011). In this context, misidentifi-
cation results in the first detection of a new “ghost” indi-
vidual that can only appear once in the data because it is 
not known to the researchers whether individuals are cor-
rectly identified upon first encounter (for example, the first 
photograph of a new individual or first sample of a unique 
genotype). However, with mark–resight studies it is almost 
certain that marks are perfectly identified upon first cap-
ture but that subsequent resightings may occur with error. 
Additionally, reports of nonexistent marks are often easily 
identified and removed from the database, but false de-
tection of existing marks may occur multiple times after 
the initial capture. We note, however, that in migratory 
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stopover systems individuals marked elsewhere in the 
flyway are often encountered and it may not be known to 
all researchers which marks have and have not been de-
ployed. When misidentification upon first encounter leads 
to ghosts, resulting survival estimates are negatively biased 
by as much as 25% (Morrison et al. 2011). If misidentifica-
tion errors result in the false detection of a real individual 
that is no longer alive, however, annual survival estimates 
from earlier in the time series could be inflated, leading to 
an apparent negative trend in survival over time. The ef-
fects of these errors—incorrect observations of marks that 
are valid but may not be truly present because the indi-
vidual has since died or permanently emigrated—has not 
been as thoroughly explored in the existing literature.

To address this type of false positive error, we evalu-
ated the effect of misreads on analysis of long-term mark–
resight datasets using a simulation study. Many monitoring 
programs that use field-readable marks involve systematic 
searching for marked individuals throughout a defined sam-
pling period, which often results in multiple observations of 
the same individuals within a sampling occasion. Multiple 
observations allow for more opportunities for misreads to 
occur and for the ability to confirm presence of individuals 
reported more than once. We propose a simple data filtering 
protocol that removes individuals recorded only once in a 
sampling period, and we evaluate the accuracy and precision 
of models that estimate survival using a both the raw and fil-
tered dataset under varying levels of misread error.

We evaluated misread errors in the context of a 
long-term monitoring program for Red Knot (Calidris 
canutus rufa) during migratory stopover. The objectives 
of this study were first to estimate flag reading error rate 
in our dataset and determine whether observer experience 
was associated with misread errors. Second, we evaluated 
the effect of those misreads on estimation of apparent an-
nual survival probability using a simulation study. Last, we 
evaluated the effect of our data filtering protocol, which 
removes potential misreads, on survival estimates by com-
paring estimates from both simulated data and Red Knot 
mark–resight data with and without data filtering.

METHODS

Flag Deployment and Resighting
We estimated error rate in mark–resight observations 
of Red Knot in Delaware, USA, from 2008 to 2016. The 
Delaware Shorebird Project is a long-term volunteer-
based research program designed to monitor the popula-
tion status of migratory shorebirds that use Delaware Bay 
during spring stopover. Red Knot are long-distance migra-
tory shorebirds that stop in Delaware Bay en route to their 
Arctic breeding grounds each year (Baker et al. 2001). The 
mark–recapture monitoring program in Delaware Bay has 
been an important component of numerous research and 

management studies since the 1990s (e.g., Atkinson et al. 
2007, Gillings et al. 2009, McGowan et al. 2015).

Throughout the study, shorebirds were captured in 
mixed-species foraging flocks using cannon nets. At the 
time of capture, we collected biometric data for each indi-
vidual and applied a USGS band along with an individually 
identifiable field-readable flag (Figure 1). Inscribed plastic 
leg flags were first deployed in Delaware Bay in 2004 and 
have been used thereafter. Flags used in our study were 
made of lime green Darvic PVC and were laser engraved 
with a unique 3-character alphanumeric code, filled with 
black acrylic paint (RAL 9005 Avkote KS Satin [AVCO; 
www.avko.co.uk]) and varnished. Leg flag design and 
manufacturing are described in detail by Clark et al. (2005). 
With the intent of estimating future rates of misidentifica-
tion in this system, before the 2008 field season 20% (280 
individual flags) of the flags manufactured for that year 
were haphazardly selected and withheld from circulation.

During a 3-week monitoring season in May each year 
(typically May 10 to June 1), trained observers visit beaches 
in Delaware to count the numbers of shorebirds and scan 
flocks with spotting scopes to record observations of Red 
Knot with leg flags. Most observers are volunteers who 
have widely varying backgrounds and experience with bio-
logical fieldwork in general and flag resighting specifically. 
Flag resighting occurs throughout the day in 30-min time 
increments that are considered independent observation 
occasions, allowing for repeated detections of individuals 
throughout the day. After returning from the field, obser-
vers transcribe their resightings to data sheets, which are 
then entered into a Microsoft Access database. After entry, 
resight records are printed from the database and com-
pared to the transcribed data sheets to ensure accurate 
data entry. These protocols minimize transcription errors 
from field data to digital data entry, but do not protect from 

FIGURE 1.  Picture of a 3-character lime green leg flag on a Red 
Knot in Delaware, USA. This flag was deployed in 2014 and the 
photograph was taken in 2017. Photograph by Jean Hall.
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transcription errors from field notebooks to data sheets, 
and do not eliminate observation errors that occur in the 
field.

Quantifying Error Rate
Because a subset of alphanumeric codes were randomly 
withdrawn from use in 2008, for all analyses described 
below, we only used resighting data from 2009 to 2018 to 
estimate misread rates. We defined misidentification rate 
in 2 ways to establish a possible range of error rates. First, 
we determined the proportion of flag resightings from 2009 
to 2018 that were either one of the withheld combinations 
or had not yet been deployed (i.e. known false detections). 
For this species and many other long-distance migrants, 
marks are deployed by researchers throughout the range 
and therefore the deployment date was not known for all 
flags resighted. Of the 8,135 unique flags resighted by ob-
servers on our project, 4,558 were deployed by our project 
and therefore had a known deployment date. The propor-
tion of known false detections in the dataset served as our 
minimum error rate since we knew that reports of these 
flag codes were errors. To establish a maximum probable 
error rate we calculated the proportion of flags recorded 
by Delaware Shorebird Project volunteers that were only 
recorded once in a season (i.e. single-observation events). 
Because flags are frequently observed more than once in 
a season, but it is unlikely that the same incorrect flag is 
recorded more than once, these single-observation re-
cords were considered as possible misreads. This max-
imum probable error rate will likely be an overestimate 
since some individuals may have been transient during 
migration and only available to observe once in that year. 
However our focus in this study was annual survival prob-
ability and not within-year stopover dynamics. We cal-
culated confirmed (impossible resightings) and possible 
(single-observation) error rates at the population level as 
the proportion of all resightings in our resighting data-
base and at the observer level as the proportion of each 
observer’s total resightings.

Observer-specific Misread Rates
Identifying flag- and observer-specific attributes associated 
with flag misreads can inform data filtering and observer 
training to minimize errors; therefore, we were interested 
in observer-specific factors that might be associated with 
a greater proportion of potential misreads. We modeled 
observer-specific misread rates as an additive effect of (1) 
number of years they had spent on the project and (2) the 
total number of resightings they have contributed to the 
database across the whole study. Although those metrics are 
correlated within observers (ρ = 0.63), there is considerable 
variation because some volunteers participate for many years, 
but only for 1 or 2 days (many years, few resightings), while 
others might be new but join the project for the entire season 

(few years, many resightings). We used a beta-binomial gen-
eralized linear model to analyze apparent misread rates while 
accounting for overdispersion and unequal variance in our 
data. Overdispersion and unequal variance in the data are 
likely caused by observers coming to the project with widely 
varying previous background and training. Among-observer 
variance in misread rate decreased with observer experience 
on the project (Figure 2), so we modeled the variance in the 
probability of misreads (represented by the overdispersion 
parameter θ) as a function of the log-transformed total 
number of resightings. Beta-binomial models were spe-
cified in R and fit via maximum-likelihood estimation 
using the bbmle package (R Core Team 2016, Bolker and R 
Development Core Team 2017).

We used the beta-binomial model to estimate the logit-
linear relationship between observer-specific misread rate 
(m) and the logged total number of resightings each ob-
server contributed to the project:

logit (m) = intercept+ β ∗ log (total resightings) .

Based on this relationship, we were interested in 
determining the number of resightings after which we 
would expect an observer’s misread rate to be equal to the 

FIGURE 2.  For each observer, the proportion of their total 
resightings that are confirmed or possible misreads as a function 
of the number of years they have spent on the project (A) and 
the proportion of their total resightings that are single observer-
day as a function of their total number of resightings (B). Total 
number of observations are plotted on the log scale. Horizontal 
dashed lines indicate among-observer median.
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median rate among all observers, expecting observers with 
fewer observations than this threshold to have an above-
average misread rate. We used median error rate instead of 
mean because distributions of observer-specific error rates 
were right-skewed, and therefore the median is a better 
metric of central tendency. We derived this metric as a data 
screening tool to define observer experience with the pro-
ject. We calculated this threshold by setting m equal to the 
median error rate and rearranging the above equation to 
solve for the total number of resightings.

threshold resightings = e
(

logit(m) − intercept
β

)

Observers below this threshold were considered “inexperi-
enced” and those above this threshold were considered 
“experienced” for the purposes of data filtering described 
below.

Effect of Flag Misreads on Survival Estimation
We used a simulation study to assess the effect of false 
detections arising from flag misreads on estimates of 
annual apparent survival probability. Capture histories 
were randomly generated to represent encounters of 
individual birds over a 5-yr, 10-yr, or 20-yr study. We 
assumed all detections after first capture were field 
resightings and not physical captures, and that 250 in-
dividuals were newly marked each year. We generated 
capture histories with annual survival probability of 
ϕ  =  0.8 and detection probability of p  =  0.5, which are 
broadly representative of our study system (McGowan 
et  al. 2011, Méndez et  al. 2018), by simulating a series 
of Bernoulli trials for survival and detection for each in-
dividual in each year following Kéry and Schaub (2012). 
To represent the Red Knot flag observation process in 
Delaware Bay, we allowed each individual to be detected 
multiple times in a given year. The number of times an 
individual was detected in a given year was randomly 
drawn from a Poisson distribution with a sampling in-
tensity of λ = 0.7, which corresponds to a probability of 
being detected at least once in that year of 0.5 (p = 1 − 
e−λ). Misidentification was a Binomial process with the 
number of trials equal to the number of detections of 
each individual in each year with probability of misiden-
tification of 0, 0.005, 0.01, 0.05, or 0.1. Allowing for mul-
tiple detections in a year meant that misidentifications 
rarely resulted in non-detections of the real individual, 
which typically only occurred if an individual was only 
seen once and misidentified on that occasion.

There are 2 types of false positive errors that could re-
sult from flag misreads. The first type occurs when one 
flag is incorrectly recorded as another flag that exists in 
the database and the second occurs when a flag is incor-
rectly recorded as a flag that does not exist. For our simu-
lations, we assumed that the second type of error would be 

scrubbed from the database before analysis and only con-
sidered the first type of error. We introduced errors in our 
simulated capture histories by randomly changing a subset 
of detections to non-detections and reassigning them to 
individuals that had been marked prior to the year of re-
assignment but were not otherwise detected in that year. 
Therefore only real individuals had the opportunity to be 
reported as a result of a misread and additional fake in-
dividuals (i.e. marks that have not been deployed) cannot 
appear in the data. This approach results in false positive 
detections of both individuals that were alive but not de-
tected and those that had died or emigrated from the study 
area. Errors were introduced at 1 of 5 error rates: 0, 0.005, 
0.01, 0.05, or 0.1. These rates were chosen to represent a 
range from low error rate (0.5%) to very high error rate 
(10%), and correspond with observed minimum and max-
imum apparent misread rates in our dataset. We simulated 
1,000 data sets under each of 15 scenarios (3 possible study 
lengths, 5 possible error rates). We estimated apparent an-
nual survival for each simulated data set using a Cormack-
Jolly-Seber (CJS) model implemented in Program MARK 
using the RMark package for R (Laake et al. 2013, R Core 
Team 2016). For each dataset, we fit a model that estimated 
a linear trend in survival probability (ϕ) over time and a 
time-constant detection probability (p). We quantified the 
effects of misreads on resulting estimates by calculating 
the root mean squared error (RMSE) and relative bias (%) 
between model estimates and true data-generating values 
of ϕ and p, and by comparing estimated slope parameters 
of the trend in survival probability over time. RMSE was 
estimated as:

RMSE(φ̂ ) =

Ã
∑n

i=1 (φ̂ i − φ)
2

n− 1

Where φ̂ i is the survival estimate from a single replicate, ϕ 
is the true survival probability, and n is the number of rep-
licates. Relative bias was estimated as:

Bias
Å
φ̂

ã
=

∑n
i=1

(φ̂ i−φ)�φ

n

Data Filtering to Minimize Errors
We evaluated the effect of 4 proposed data filtering 
methods on estimates of Red Knot apparent annual sur-
vival and estimates from simulated datasets. We estimated 
apparent annual survival for Red Knot first captured from 
2008 to 2017 and resighted from 2009 to 2018 in Delaware, 
USA. All first encounters were physical captures during 
which the flag was deployed, and all subsequent encoun-
ters were field resightings. We first filtered the data to re-
move all resightings of flags not deployed by researchers 
in Delaware, which removed all impossible records of 
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withheld flags and those that were observed before their 
deployment date. Second, we removed both impossible 
flags and all records from inexperienced observers. We 
determined observers to be “inexperienced” based on the 
threshold method described above. Third, we removed 
both impossible flags and all observations of flags that were 
only observed once in a given year. Lastly we removed all 3 
types of known or potential errors.

We evaluated the fit of the Red Knot data to the fully 
time-dependent CJS model using the R2ucare package for 
R (Gimenez et  al. 2018), which indicated potential tran-
sience and trap response. To account for these, we in-
cluded 2 time-varying individual covariates. The first was 
a dummy variable that indicated whether each individual 
was detected in the previous year (0 = not seen, 1 = seen). 
This was included as a covariate on detection probability 
to account for a type of trap-response likely resulting from 
nonrandom temporary emigration (individuals skipping 
stopover in Delaware in some years). We accounted for 
transience by assigning each individual to an age class (first 
capture  =  1, all subsequent captures  =  2) and estimating 
the effect of this dummy age class on survival probability. 
This method of estimating survival after first capture sep-
arately from survival after subsequent encounters has been 
used to account for the presence of transients (individuals 
only present for one year) in capture–recapture models 
(Pradel et al. 1997).

We used RMark to fit a CJS model that estimated a 
linear trend and the effect of the dummy age class on an-
nual apparent survival probability. Detection probability 
was modeled as a fixed effect of year and whether the in-
dividual was seen in the previous year. We compared the 
estimated slope of survival over time among the 4 data 
filtering methods to determine whether they produced 
different ecological inferences. To provide some con-
text for interpreting these results and more objectively 
evaluate the effects of removing observations from the 
data, we also fit the model to simulated datasets with and 

without data filtering. For each simulated dataset, we fit 
the CJS model both without data filtering and after re-
moving all instances in which a flag was only detected 
once in a given year. We compared estimated trends in 
survival over time among scenarios and calculated RMSE 
and relative bias of estimates with and without removing 
single-observations.

RESULTS

Quantifying Error Rate
Our flag resighting dataset contained 80,880 total recorded 
observations by 201 observers of 8,135 individual Red Knot 
from 2009 to 2018 (Table 1). The number of observers in a 
given year ranged from 36 to 53, with an average of 42 ob-
servers per year. The intensive survey effort results in many 
flags being observed more than once each year, with the 
average flag seen 5 times in total by 3 different observers 
in a year and at maximum seen 58 times by 23 different 
observers. There were 136 reports of withheld flags (one 
of the 280 flags removed from circulation in 2008) by 46 
different observers and 116 reports of flags in a year before 
they were deployed by 37 different observers, giving a total 
of 252 impossible observations (0.31%). There were 5,374 
observations that occurred only once in a given year in the 
database (6.6%). Therefore the range of potential misread 
errors in our resighting data was 0.31% at minimum and 
6.6% at maximum.

Observer-specific Misread Rates
Distributions of observer-specific misread rates were all 
right-skewed, so we report among-observer medians and 
interquartile range (IQR). Withheld and not-yet-deployed 
flags were observed rarely. The median observer-specific 
rate of recording impossible flags was 0% (IQR: 0%, 0.24%), 
but the observer mean was 0.62%. The median observer-
specific rate of single-observations was 7.4% of all observa-
tions (IQR: 4.2%, 12%).

TABLE 1.  Summary of resightings of 3-character lime Red Knot flags each year from 2009-2018, including the number of observers, 
number of unique flags seen, and total resightings recorded. Confirmed misreads are records of withheld or not-yet-deployed flags. 
Possible misreads are flags that were only recorded a single time in that year. Percentage of total resightings is given in parentheses..

Year Number of observers Individual flags
Total

resightings
Average

resightings per flag Confirmed misreads Possible misreads

2009 42 1,917 10,888 5.7 27 (0.25%) 581 (5.3%)
2010 41 1,217 4,144 3.4 13 (0.31%) 445 (10.7%)
2011 41 1,897 8,261 4.4 38 (0.46%) 634 (7.7%)
2012 39 1,409 6,781 4.8 26 (0.38%) 517 (7.6%)
2013 36 939 3,879 4.1 19 (0.49%) 368 (9.5%)
2014 39 1,336 6,540 4.9 30 (0.46%) 422 (6.5%)
2015 42 2,265 13,755 6.1 49 (0.36%) 738 (5.4%)
2016 43 726 2,346 3.2 6 (0.26%) 320 (13.6%)
2017 53 1,831 11,066 6.0 18 (0.16%) 622 (5.6%)
2018 46 2,098 13,220 6.3 26 (0.19%) 727 (5.5%)
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The total number of resightings made by an observer 
was a significant predictor of both minimum and max-
imum possible misread rate (Figure 2). Both the prob-
ability of misreads and the among-observer variation 
in misread probability decreased as the number of total 
resightings logged increased (βtotal

minimum  =  −0.21  ±  0.08, 
βtotal
maximum  =  −0.19  ±  0.04), but the number of years an 

observer worked on the project was not a significant 
predictor of misread rates (βyears

minimum  =  0.039  ±  0.04, 
β
years
maximum = 0.036 ± 0.02). Among-observer variation in rates 

of single-observation resightings decreased as the total 
number of resightings increased, as indicated by a positive 
relationship between the overdispersion parameter θ and 
the total number of resightings logged (α = 1.9 ± 0.53).

Using the predicted relationship between number of ob-
servations and apparent misread rate, we calculated the 
number of observations after which observers converged 
on the median error rate. Predicted maximum error rates 
for observers in our study converged on the median after 
307 resightings. The median maximum error rate calcu-
lated only from experienced observers above this threshold 
was 6.4% (IQR: 4.3%, 7.6%) possible misreads per observa-
tion, while inexperienced observers below this threshold 
had a median single-observation rate of 8.8% (IQR: 3.1%, 
15.3%).

Effect of Flag Misreads on Survival Estimation
Introducing random flag misreads into our simulated cap-
ture histories resulted in apparent negative trends in sur-
vival probabilities over time, particularly when the error 
rate was high (≥0.05; Figure 3). The effects of misreads 
were most pronounced in longer time series, with the 
RMSE of survival probability estimates for a 20-yr study 
ranging from 0.007 to 0.066 and relative bias from 0.5% to 
7.6% (RMSE and relative bias for all scenarios are listed in 
Appendix Table 2). With low misread rates (0, 0.005, 0.01), 
precision of model estimates increased with study length; 
however for the higher error rates (0.05, 0.1), longer study 
lengths resulted in decreasing accuracy and precision of 
model estimates as errors had more chance to accumulate 
(Figure 4).

Data Filtering to Minimize Errors
We analyzed capture histories of 2,594 individual Red Knot 
from 2008 to 2018. Of the 25,226 total recorded resightings 
of these individuals, 2,850 were from inexperienced obser-
vers (defined for our study as observers with fewer than 
300 total resightings) and 941 were single-observations. 
When only impossible resightings were removed, we found 
evidence of a negative trend in apparent annual survival 
probability over time (β  =  −0.043, CI: −0.094 to 0.0081; 
Figure 5). Removing records from inexperienced observers 
had little effect on estimated trend (β = −0.034, CI: −0.084 

to 0.015), but removing single-observations resulted in no 
evidence of a trend in annual survival probability over the 
past 10 yr (β  =  −0.0074, CI: −0.047 to 0.032). Removing 
both inexperienced observers and single-observations 
had a similar effect as removing single-observations alone 
(β = −0.0059, CI: −0.046 to 0.034). The differences in es-
timated survival probability with and without removal 
of single-observation records is most pronounced when 
comparing estimates for the first and last years included 
in this analysis. Without data filtering, estimated survival 
probabilities apparently declined from ϕ = 0.87 (95% CI: 
0.84, 0.89) in 2008 to ϕ = 0.82 (95% CI: 0.77, 0.86) in 2017. 
After removing single-observation records, estimated sur-
vival probabilities were lower overall, with ϕ = 0.81 (95% 
CI: 0.78, 0.84) in 2008 and ϕ  =  0.80 (95% CI: 0.76, 0.84) 
in 2017.

Removing single-observation records from the simu-
lated datasets eliminated bias caused by misreads (Figure 
4), but also decreased precision of estimates. When data 
filtering was applied to simulated data, no annual trend 
was detected in survival probabilities (Figure 3). For the 
20-yr study length, RMSE was reduced to 0.01 and 0.009 
for error rates of 0.005 and 0.1, respectively, and relative 
bias ranged from −0.02% to 0.05%. However, for the 5-yr 
study length, removing single-observations decreased the 
precision of survival estimates, with RMSE of ~0.09 for all 
error rate scenarios (Figure 4).

DISCUSSION

We estimated the rate of individual misidentification in the 
10-yr mark–resight dataset and found a minimum error 
rate of 0.31% and maximum of 6.6%. Our simulation study 
showed that introducing misreads into long-term mark–
resight data results in spurious negative trends in annual 
survival probability when in reality survival is constant over 
time, but that those effects can be mitigated by removing 
all single-observation records from the data. The bias in 
survival estimates caused by misread errors increased with 
both the simulated error rate and the length of the study. 
Longer studies allow for more opportunities for misreads 
to occur, and individuals marked early in the study have 
a greater propensity to be falsely detected after they have 
died, inflating estimates of survival from previous years 
and leading to apparent negative trends.

Without data filtering, analysis of the Red Knot data in-
dicated a slight decline in apparent annual survival from 
2008 to 2018, but that trend was no longer detected when 
all single-observation records were removed. Our post-
filtering estimates of Red Knot annual survival probability 
agree with a recent meta-analysis of global shorebird sur-
vival rates that synthesized the existing literature and re-
ported an average Red Knot annual survival probability of 
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0.801 ± 0.011 (Méndez et al. 2018). Along with many Arctic-
breeding shorebirds, the rufa Red Knot is a species of con-
servation concern; accurate estimates of demographic 
rates are important both for understanding the ecological 
drivers of declines and for implementing effective conser-
vation actions. Most mortality for long-distance migrants 
likely occurs during the migratory or nonbreeding period 
(Newton 2006). Survival estimation is a core component 
of full annual cycle population modeling (e.g., Flockhart 
et al. 2015, Rushing et al. 2017); positively biased survival 

estimates and spurious trends in those estimates could ob-
scure our understanding of relative importance of each 
phase of the annual cycle for population stability.

Simulation Study Extensions
Our simulation study indicated that for misread error 
rates ≥0.05, survival estimates were positively biased 
for earlier years in the time series, resulting in apparent 
negative trends in survival probability over time. Other 
studies have also demonstrated the potential for errors in 

FIGURE 3.  Results of simulation study evaluating the effect of individual misidentification on estimates of annual survival probability 
for a 5-yr study (A, D), 10-yr study (B, E), and 20-yr study (C, F). Misreads led to apparent negative trends in survival probability over 
time (A–C), particularly for long-term studies. Removing all single-observation records eliminated bias caused by misreads but also 
decreased precision of estimates, especially for short time series (A, D).
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mark–recapture data to bias estimates of survival (Schwarz 
and Stobo 1999, Morrison et  al. 2011), but here we also 
show that errors could result in spurious ecological infer-
ence about trends or, potentially, drivers of survival prob-
ability over time.

The inputs of our simulation could be tailored to the 
specifics of any study to empirically evaluate the effect 
of various levels of misidentification errors on inference 
about apparent annual survival. We encourage others to 
use a simulation approach to compare observed trends 

FIGURE 4.  Effect of misreads on the precision (root mean squared error, RMSE) and bias (%) of annual survival estimates for studies 
of varying lengths. Without data filtering (black), bias induced by misread errors increased with study length. Filtering the data by 
removing all single-observations (gray) effectively reduced bias but resulted in less precision of estimates, particularly for shorter time 
series.

FIGURE 5.  Effects of data filtering methods to reduce the effect of potential flag misread error on estimated trends (A) and annual 
apparent survival probability (B) of Red Knot marked and resighted in Delaware during spring stopover. Removing only impossible 
observations or those from inexperienced observers led to an apparent negative trend in survival probability over the past 10 yr, while 
removing single-observation records resulted in no trend in survival probability.
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in survival estimates with those that would be expected 
given high error rates alone. Our simulation code is freely 
available online for this purpose. This exploratory analysis 
could assuage concerns about suspected low misread rates, 
or alert researchers to potential bias in their estimates if 
error rates are presumed to be higher.

The way we simulated misreads was simplistic for the 
purposes of assessing general bias. In reality misreads are 
likely nonrandom and occur in several ways that can be 
difficult to explicitly model. The simplest type of misread 
occurs when a single character is misread and replaced by 
another, incorrect, character (e.g., AT2 recorded as 4T2, or 
vice versa). This type of misread is unlikely to occur ran-
domly, as certain pairs or groups of characters are more 
likely to be mistaken for each other (e.g., A and 4, K and 
X). Another type of misread could occur where all indi-
vidual characters are recorded correctly, but transcribed 
in the wrong order (e.g., AT2 recorded as A2T). This in-
correct transcription could affect encounter histories in a 
more random way. The goal of our simulation work was 
not to capture and explore all the specific misread cases 
that apply to our system, but rather to generally explore 
the potential consequences of misread errors on estima-
tion and ecological inference.

Minimizing Errors during Data Collection and 
Processing
The first, and most obvious, approach to reduce the effect 
of misreads is to take measures to reduce the probability of 
misreads occurring during data collection (Bearhop et al. 
2003). Observer training and emphasis on data quality over 
quantity is key to ensuring robust mark–recapture data. 
For inscribed flags or bands, several papers have detailed 
the combinations of letters and numbers that are more 
likely to be misread, as well as the field conditions most 
likely to lead to errors (Burton 2000, Bearhop et al. 2003, 
Milligan et al. 2003, Clark et al. 2005, Mitchell and Trinder 
2008). Here we also stress the importance of long-term 
participants instead of rapid turnover of new observers 
(whether they be volunteers or paid interns). In our study, 
the number of resightings recorded in the field, but not ne-
cessarily the number of years with the project, was a good 
predictor of misread rates. Regardless of background or 
previous experience, all observers in our study converged 
on the median apparent misread rate after ~300 total ob-
servations. However, although estimated error rates from 
inexperienced observers were higher (8.8% compared to 
6.4% from experienced observers), removing records from 
inexperienced observers had little to no effect on estimates 
of Red Knot survival. This may be a function of the larger 
variation in error rates among “inexperienced” obser-
vers, who have widely varying personal backgrounds and 
experience.

A second way to reduce the effect of misreads is through 
more extensive data filtering, as demonstrated in this paper. 
Analyzing observer-specific misread rate as a function of 
some metric for experience for any study (number of years, 
number of observations), as we did here, could help de-
termine the point at which observers tend to the median, 
and therefore the appropriate study-specific threshold of 
excluding observations. We found that removing records 
from “inexperienced” observers had little effect on survival 
estimates, but estimating survival with and without those 
records could be a useful exercise in diagnosing whether 
observer experience is an important factor to consider.

Due to intensive resighting effort that occurs in Delaware 
during spring migration, we were able to identify instances 
when a flag was recorded only once in a year as possible 
misreads. Because the probability of the same false posi-
tive detection occurring more than once in the same year is 
low, most false detections will also be single observations. 
Removing those from the data will inevitably remove detec-
tions of real individuals, but will also remove all or nearly 
all false positives. Similar to the ad hoc method of dealing 
with transients first proposed by Pradel et al. (1997), this 
will reduce precision but ensure unbiased estimates of sur-
vival. We do not propose removing all single-observation 
records as a rule of thumb, but as a potential data filtering 
option that could be considered if the occurrence of mis-
reads is a concern and the primary goal of the analysis is 
to estimate annual survival probability. Researchers should 
carefully consider the tradeoff between precision obtained 
by larger sample sizes and the number of potential errors 
due to misreads in their data.

Modeling Misidentification Errors
The Cormack-Jolly-Seber (CJS) model for estimating an-
nual survival is the basis for a large suite of extensions to 
deal with more complex questions and data structures (see 
Williams et al. 2002). We investigated the effect of misreads 
on a simple application of the CJS model, and expect that 
biases identified here would carry through to more com-
plex extensions. We only investigated the effect of misreads 
on estimation of apparent annual survival, but capture–re-
capture data are used to estimate a variety of other demo-
graphic parameters. Additionally, we simulated only one 
type of misread, where real marks are mistakenly observed, 
as opposed to the type of misread that results in the obser-
vation of a new, nonexistent mark. In most mark–resight 
studies, the latter type is likely to be filtered from the data 
before analysis, and therefore is of less concern.

The type of misidentification that results in new, 
nonexistent individuals is the type frequently encountered 
with noninvasive genetic sampling and photographic cap-
ture–recapture, and several model-based methods have 
been proposed to deal with these false positives in genetic 
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and photographic mark–recapture. The Mt,α model, intro-
duced by Lukacs and Burnham (2005) and extended by 
Link et al. (2010) and Yoshizaki et al. (2011), uses a latent 
multinomial to determine the probability that a given cap-
ture history is real. A key assumption of the Mt,α models 
is that false identifications always create new nonexistent 
individuals and that these ghost individuals can only be 
observed once. To deal with this problem of ghost cap-
ture histories, Morrison et al. (2011) described a method 
of “conditioning” natural mark capture–recapture data by 
removing all first detections of new individuals, which is 
conceptually similar to the ad hoc method to remove tran-
sients proposed by Pradel et al. (1997) and to our process of 
removing all single-observation events. Even though some 
real observations will be discarded in the process, it is likely 
that doing so will also eliminate all false detections, there-
fore reducing bias. For long-term mark–resight datasets, 
it is likely that both possible and impossible marks could 
be recorded incorrectly, and may be recorded more than 
once in the dataset. If filtering impossible marks from the 
data is not feasible, for example in a migratory flyway with 
multiple projects marking individuals, modeling the mis-
read probability for these types of data becomes incredibly 
complex.

By modifying the likelihood of the existing CJS family of 
models, it could be possible to design an analysis frame-
work that could directly estimate misread probability. 
Multi-event models that directly account for uncertainty 
in state assignment (Pradel 2005, Choquet et  al. 2009) 
could provide a basis for explicitly modeling for the prob-
ability of false positive detections. These complex models 
add additional parameters and associated variances, how-
ever, which could obfuscate ecological research and man-
agement support. Therefore addressing the problem first 
through data collection and screening protocols is prefer-
able, and modeling false positives directly may only be ne-
cessary for very long studies with suspected high rates of 
false positive detections.

All human data recording is prone to error, and errors 
due to individual misidentifications can accumulate in 
mark–resight studies as the study length and number 
of deployed marks increases. Long-term mark–resight 
studies may be especially vulnerable to biased estimates of 
apparent survival as a result of these errors if misread rates 
are high. Observer training and retention protocols may 
help reduce error during data collection, but ecologists 
working with historical mark–resight datasets should also 
consider potential effects of misread errors when designing 
analyses. Exploratory data analyses and simulation studies 
such as those presented here can aid in estimating probable 
error rates in a dataset and evaluating potential bias with 
the planned modeling approach. If the potential for mis-
reads is not considered in analysis of long-term datasets 

collected by many observers, spurious trends caused by 
errors could influence ecological inference about popula-
tion demographics and resulting conservation decision-m
aking.
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APPENDIX TABLE 2. RMSE and bias of CJS model estimates under varying error rates and study lengths.

Study length (years) Error rate

Survival probability Detection probability

RMSE Relative bias RMSE Relative bias

No data filtering
5 0 0.025 0.113 0.018 0.231
5 0.005 0.025 0.320 0.019 −0.245
5 0.01 0.025 0.433 0.019 0.216
5 0.05 0.033 2.55 0.021 0.411
5 0.1 0.049 5.00 0.020 0.564
10 0 0.010 −0.006 0.008 0.004
10 0.005 0.010 0.334 0.009 −0.222
10 0.01 0.012 0.723 0.011 −0.950
10 0.05 0.031 3.344 0.022 −4.04
10 0.1 0.054 6.073 0.034 −6.56
20 0 0.005 0.008 0.005 −0.037
20 0.005 0.007 0.547 0.008 −1.40
20 0.01 0.011 1.070 0.016 −3.00
20 0.05 0.040 4.53 0.058 −11.5
20 0.1 0.066 7.63 0.092 −18.3
Remove single-observations
5 0 0.094 0.164 0.425 −84.4
5 0.005 0.093 0.306 0.423 −84.1
5 0.01 0.092 0.086 0.424 −84.3
5 0.05 0.092 0.091 0.425 −84.5
5 0.1 0.091 0.352 0.424 −84.4
10 0 0.027 −0.062 0.425 −84.6
10 0.005 0.028 −0.126 0.425 −84.6
10 0.01 0.027 −0.067 0.426 −84.7
10 0.05 0.027 −0.004 0.426 −84.9
10 0.1 0.027 −0.157 0.425 −84.5
20 0 0.011 −0.006 0.425 −84.6
20 0.005 0.011 −0.006 0.425 −84.6
20 0.01 0.011 −0.070 0.425 −84.6
20 0.05 0.011 0.001 0.426 −84.7
20 0.1 0.011 −0.076 0.425 −84.6
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